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ABSTRACT

A cursory review of the classical methods of orbit determination is

given for the purpose of orienting the reader to the nature of the

classical orbit determination problem. The Gaussian and Laplacian

methods of obtaining a first approximation to the orbit are outlined,

but no attempt is made to describe the computational procedures in

detail. Instead, a list of references is included that provides exhaustive

treatments oi! the classical orbit determination topics.

I. INTRODUCTION

Many volumes have been written on the classical
methods of orbit determination. The subject has been

developed through the efforts of some of the most promi-

nent mathematicians, chiefly those who published in the

second half of the eighteenth century. The problem of
classical orbit determination is to reduce a limited num-

ber of direction observations, usually three, to a set of six

orbital elements. The observed object may very well be

newly discovered, the most common being a comet or

minor planet. The purpose of the classical orbit deter-
mination methods is to provide a preliminary orbit so

that the object can be recovered at a later date. Also, such

an orbit can serve as a first approximation to a more

refined determination that involves many observations

over long periods of time. In either case, the determined

orbital elements are quite satisfactory if they are based

on simple, two-body Keplerian motion, and the deter-

mination of the orbit can be thonght of as the search for

a transformation that will convert three pairs of right

ascension and declination measurements (six angles in all)

to the six constants of the two-body motion.

It is fairly obvious that in space flight the classical

methods will find limited application. On the one hand, a

preliminary orbit is rarely required because the orbit of

a space vehicle is not totally unknown, and a sufficient

first approximation to the orbit can be obtained from the

designed trajectory. On the other hand, angle observa-

tions are not the only types of data available when radio

tracking is employed. Moreover, the classical methods

do not adapt themselves directly to range and range-rate

measurements. Therefore, in this report only an outline

of the classical procedures is presented, and the reader is
directed to the references for the details.
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II. STATEMENT OF THE PROBLEM

Basically, if the transformation between angular obser-

vations and orbital elements exists then it can be written

in the functional form

m == al (e,, e_, "'" ,e.,ti)]

i = 1,2,3 (1)
81 _i (el, e_, • , e,_, ti))

where e,, e2, "'" , e,; are six constants of the two-body

motion and the subscript i refers to the i 'h time of obser-

vation ti. Eq. (1) states that if the six orbital elements

el, ee, -'- , e,_ are known, then the position of the object in

the sky can be determined as a function of the time t.

This implies no more than the fact that a solution exists

to the equations of motion and that the geometry of the

observer in space is known. In mathematical terms, the

solution to the equations of motion yields the position

vector r of the object P with respect to some origin S,

such as the center of the Sun or Earth (Fig. 1), and given

the known position vector R of the observer O, tile

P
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Fig. 1. Geometry of the observer and object in space

observer-centered or topocentric position vector 13 of the

object can be determined by

p = r - R (2)

The unit vector L that describes the direction of the

object is

L- P (3)
P

where p is the magnitude of the vector p. Now the com-

ponents of L are the direction cosines of the object, and

if the reference coordinate system is equatorial with the

x-axis directed toward the vernal equinox, then the right

ascension and declination can be determined from

L_, = cos 3 cos a

Lu = cos 8 sin c_

L.. = sin 8 (4)

Thus the transformation Eq. (1) does exist, and if the

Jacobian of the system is not zero, it is theoretically

possil/le to invert the six equations for the six unknown

constants

ej = ej ((t,, 3,, t_, ¢t,,, 8,,, t.,, a:_, 8:,, t:,)

i= 1,2,---,6 (5)

The entire purpose of the classical orbit determination

methods is to obtain this inverse, which, unfortunately,

cannot be written in closed form. Thus, iterative tech-

niques must be employed for the solution, and because

the values of the ei are often totally unknown, a first

approximation to the solution is required. Finally, a

process called differential correction modifies the first

approximation until the values of e; satisfy the system of

Eq. (1). Again the reader is referred to the References

(particularly Ref. 2 and 4) for a description of the differ-

ential correction methods. Also, these sources should be

consulted for a detailed description of the computation

of the first approxinmtion. Only the basic ideas of two

popular approximations, the Gaussian and Laplaeian

methods, are given here.

2
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III. THE LAPLACIAN METHOD

The Laplacian method is based on writing Eq. (:2) in
the form

r = pL + R (6)

Actually, for comparison with the references, the vector R

is oppositely directed in practically all the literature

because traditionally the coordinates of the Sun, the most

usual origin, are given with respect to the Earth. How-

ever, to avoid confusion with space flight practice, the

vector R is directed toward the ot)serve, r. In either case,

the logic of the development is unaltered.

Now, the method of Laplace is based on twice differen-

tiating Eq. (6) to yield two more equations for the

velocity vector r and acceleration "_. However, by assum-

ing tile validity of Newton's laws, tile acceleration is given

for two-body motion by

/xr- (7)

where r is the magnitude of r and/_ is the usual constant

of proportionality. Therefore, the acceleration can be

eliminated from tile two additional equations leaving only

the position r and velocity [" components of the object P.

;=bL_pL h (s)

(9)

The position vector r can be eliminated in Eq. (9) by

using Eq. (6), and after rearranging terms there results

. (¢)÷-_- p _ 2L b _ L_':: - il+ (10)

Because Eq. (10) is a vector equation there are actually

three equations available for each time of observation.

Consider these equations at a particular time t... Now the

vectors L and R are both known at this time, and if their

derivatives could also be determined, then Eq. (10) would

represent three equations in three unknowns, p, /3, and _.

In addition, if the radius r were given, the three equations

would t)e linear, and their solution would follow quite

easily. In fact, the linear solution is obtained for p and/_

by the method of determinants. With tim components
of R given by X, Y, and Z there results

p m

L+ ,.:_]

(_ + _Lq
r 3 ]

2L_ L_

2L. L!,

2L_ L.-

(11)

or by separating out the 1/r :_terms, Eq. (11) can be writ-
ten in the notation of Herrick as

Dp = ,4" - B'/r :_

and simihuly for/_

(12)

D D C" -E'/# (13)

where

AP

-_ eL L.

-7 eL,, L_

-_ eL.. L_

Bp = pt

X - 2L, -- L,

Y - 2L. -- L.

Z - 2I_: -- L:

"L - _ L.

3



JPL TECHNICAL REPORT NO. 32-497

_ -X L_

_v -Y Lv

_ - Z L_

Still assuming that the derivatives of L and R are avail-

able, the method of Laplace finds a value of r that will

satisfy both Eq. (12) and Eq. (6), or, more rigorously,

instead of Eq. (6) itself, the so-called triangle equation is
used

r _=r'r--p2 +R 2 +2p(R.L) (14)

The simultaneous solution of Eq. (12) and (14) is not
described here, but all that is involved is an iterative

solution to Eq. (14) by means of a Newton-Raphson

procedure.

With the iterative solution to r available, it is now

possible to return to Eq. (13) and compute the range rate
p. Finally, Eq. (6) and (8) provide the position and

velocity which can serve as orbital elements, or, alter-

natively, for the case where the classical Keplerian ele-

ments are required, the usual transformations from posi-

tion and velocity to orbital elements can be applied. It

should be remembered that, so far, all the above manipu-

lations have been performed at the midpoint time t._, and
the first and second derivatives of R and L have been

assumed known. Actually, the other two points tl and t3,

with the point t2, serve to provide these derivatives

through numerical differentiation, and thus, as expected,
all three points enter into the determination of r and _ at
t_. The differentiation formula is that of Poincar_ and is

derived from a second-order Taylor's formula

where

R,--Rz +ilzr, +_ zr, i--1,3 (15)

r_ -- t_ - t2 (16)

Of course, the vector R canbe replaced by L in Eq. (15)
and the linear solution for L2 and L2 is exactly the same
as for R2 and R2.

r_r3(rl- r_)Rz= 2r_ll_ + 2(r_- r3)llz- 2r_R_ (18)

4
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IV. THE GAUSSIAN METHOD

The second technique for computing a first approxi-

mation is often called Gauss's method, although the for-

mulation of malay of the ideas was described by Lagrange,

and the computational form of the method used today

reflects modifications by Gibbs, Herrick and others. The

basic equations give position and velocity at the middle

time t., in terms of position at the three times of observa-

tion. Again, in the notation of Herrick

r2 = clrl + c_r3 (19)

i'2 = - dlr, + d._,r_ + d_r:_ (20)

Equation (19) simply states that the three position vec-

tors of the object lie in the same plane, or, in accordance

with Kepler's first law, that the motion of the object is

planar. The second equation is a numerical differentiation

formula similar to Eq. (17) in the IJaplacian method. The

c and d eoeffieients, as given by Herriek, are listed below

without their derivation which is readily available (Ref. 1

and 4). The definition of ri is the same as in Eq. (16)

c_ = Ai + 1 + B2 i := 1,8 (21)
r., k

where

A1 -- T3 A: -- TI

T3 -- T1 T3 -- TI

and
B_ = A_(B_ + B2) BI_= Aa(B_ + B_)

BI_ "_2(r2, -- TIT3

_ - a_,_ - _)B..,=T_(r,

B 3 _ _ (T21 --TIT 3 -}- T_)

d_ = Gi + _H_ i =:: 1,2,3
r_

where

2 r_T 3

(22)

H,- /xr:_ H:,- tzr'
12 " 12

G_, = G_ - G:I H.,, = H, - H:_

note that if the term H_/r:l is neglected in d_, then Eq.

(20) reduces to Eq. (17).

Now the Gaussian solution makes use of Eq. (19) by

substituting Eq. (6) for the position vector into Eq. (19)

and by grouping terms as follows:

(C_p,)L, - p_Lo + (C:,p:,)L C,R, + R_ -- C:,R:,

a linear solution to p.,_ is now obtained in the form

where

and

Ep.,, = F,C_ - Fo + F:,C:,

ILv.: L_:q

L._ L...., L::, I

(24)

Fi = -- Lu, Yi L_3 i = 1,2,8

[L_ Zi L:;,

The scalar quantity E is recognized as the triple scalar

product

E -- L," (L_ × L_)

which must remain nonzero if the solution to p2 is to exist.

Geometrically this says that the three observation vectors

must not be coplanar, or, equivalently, that if the three

observations lie on a great circle arc in the sky then the
solution is indeterminate. Procedures for dealing with

this type of singularity are described in the literature.

However, if E is nonzero the solution is simply one of

recognizing that the only unknowns in Eq. (24) are p_,

and r, and that in a manner analogous to the Laplacian

method, Eq. (24) can be solved iteratively with the tri-

angle Eq. (14) to obtain both p2 and r:. All that remains
is to evaluate the vectors r: and _'_ by the following

process:

a. Solve Eq. (23) for C_p, and C:_p:_in a fashion similar

to Eq. (9_.4).This is usually done simultaneously with

the solution for p._..

b. Using the value of r_ from the simultaneous solution

of Eq. (24) and (14), compute C_ and C._ and obtain

p, and p:; by p_ = (Cipi)/Ci.

e. Compute the position vectors r_ and ra by Eq. (6).

b. Compute d_ and d_ with r_ = r, • r_, and, finally,

use Eq. (19) and (20) to obtain the required r., and i-...

5
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